Sort by
The Multiobjective Control Based on Tolerance Optimization in a Multienergy System

To address the issue of multiobjective control in multienergy systems with diverse operational objectives, a two-stage optimization framework based on expected point tolerance has been proposed in this paper. In the first stage, a single objective function is used for optimization control to obtain the expected point of the multiobjective optimization problem. Then, in the second stage, by defining the allowable deviation between each optimization objective and the expected point, the original multiobjective optimization problem is transformed into a single objective optimization problem solution with tolerance measurement. Finally, in the simulation scene of a multienergy system, it is demonstrated that compared with the optimal results under each single objective method, the proposed method increases power line loss, maximum voltage deviation, new energy consumption, and economy by 2.22, 2.30, 1.02, and 2.45 times, respectively. Compared with the suboptimal results, the proposed method reduces power line loss by 22.26, 1.74, 1.09, and 0.97 times, respectively. Combining the shape of the Pareto frontier, it is demonstrated that the proposed method can comprehensively consider the needs of multiple power optimization objectives for forming a more reasonable and effective system optimization scheduling and also provide a new approach for solving multiobjective optimization problems.

Open Access Just Published
Relevant
Multiobjective Neuro-Fuzzy Controller Design and Selection of Filter Parameters of UPQC Using Predator Prey Firefly and Enhanced Harmony Search Optimization

This research introduces a unified power quality conditioner (UPQC) that integrates solar photovoltaic (PV) system and battery energy systems (SBES) to address power quality (PQ) issues. The reference signals for voltage source converters of UPQC are produced by the Levenberg–Marquardt back propagation (LMBP) trained artificial neural network control (ANNC). This method removes the necessity for conventional dq0, abc complex shifting. Moreover, the optimal choice of parameters for the adaptive neuro-fuzzy inference system (ANFIS) was achieved through the integration of the enhanced harmony search algorithm (EHSA) and the predator-prey-based firefly algorithm (PPFA) in the form of the hybrid metaheuristic algorithm (PPF-EHSA). In addition, the algorithm is employed to optimize the selection of resistance and inductance values for the filters in UPQC. The primary objective of the ANNC with predator-prey-based firefly algorithm and enhanced harmony search algorithm (PPF-EHSA) is to enhance the stability of the DC-link capacitor voltage (DLCV) with reduced settling time amid changes in load, solar irradiation (G), and temperature (T). Moreover, the algorithm seeks to achieve a reduction in total harmonic distortion (THD) and enhance power factor (PF). The method also focuses on mitigating fluctuations such as swell, harmonics, and sag and also unbalances at the grid voltage. The proposed approach is examined through four distinct cases involving various permutations of loads and sun irradiation (G). However, in order to demonstrate the performance of the suggested approach, a comparison is conducted with the ant colony and genetic algorithms, i.e., (ACA) (GA), as well as the standard methods of synchronous reference frame (SRF) and instantaneous active and reactive power theory (p-q). The results clearly demonstrate that the proposed method exhibits a reduced mean square error (MSE) of 0.02107 and a lower total harmonic distortion (THD) of 2.06% compared to alternative methods.

Open Access
Relevant
Available Transfer Capability Assessment of Multiarea Power Systems with Conditional Generative Adversarial Network

Available transfer capability (ATC) is an important measurement index to evaluate the security margin of interconnected power grids and serve as a reference for the transmission right transaction. In modern power systems, ATC is affected by the transmission network topology, renewable power output uncertainty, and load demand uncertainty. Traditional works usually model the power source-load uncertainty by using robust optimization, interval optimization, or chance-constraint optimization, which cannot fully reflect the probabilistic distribution of the daily source-load uncertainty. This paper proposes an ATC assessment methodology based on the typical stochastic scenarios of renewable output and load demand of multiarea power systems. Furthermore, the conditional generative adversarial network (CGAN) algorithm is adopted to generate and select representative scenario sets based on historical raw data, which can fully reflect the usual operating condition of a system with high renewable energy penetration. The scenario set that is fed into the ATC assessment model can fully characterize the impact of source-load uncertainty on daily ATC. Finally, the proposed method is verified by a modified three-area IEEE 9-bus system and a real-world provincial power system.

Open Access
Relevant
A Novel Hybrid MPPT Controller for PEMFC Fed High Step-Up Single Switch DC-DC Converter

At present, there are different types of Renewable Energy Resources (RESs) available in nature which are wind, tidal, fuel cell, and solar. The wind, tidal, and solar power systems give discontinuous power supply which is not suitable for the present automotive systems. Here, the Proton Exchange Membrane Fuel Stack (PEMFS) is used for supplying the power to the electrical vehicle systems. The features of fuel stack networks are very quick static response, plus low atmospheric pollution. Also, this type of power supply system consists of high flexibility and more reliability. However, the fuel stack drawback is a nonlinear power supply nature. As a result, the functioning point of the fuel stack varies from one position to another position on the V-I curve of the fuel stack. Here, the first objective of the work is the development of the Grey Wolf Optimization Technique (GWOT) involving a Fuzzy Logic Controller (FLC) for finding the Maximum Power Point (MPP) of the fuel stack. This hybrid GWOT-FLC controller stabilizes the source power under various operating temperature conditions of the fuel stack. However, the fuel stack supplies very little output voltage which is improved by introducing the Single Switch Universal Supply Voltage Boost Converter (SSUSVBC) in the second objective. The features of this proposed DC-DC converter are fewer voltage distortions of the fuel stack output voltage, high voltage conversion ratio, and low-level voltage stress on switches. The fuel stack integrated SSUSVBC is analyzed by selecting the MATLAB/Simulink window. Also, the proposed DC-DC converter is tested by utilizing the programmable DC source.

Open Access
Relevant
Fault Identification of UHVDC Transmission Based on DF-AD and Ensemble Learning

High-resistance ground faults are difficult to detect with existing ultrahigh voltage direct current (UHVDC) transmission fault detection systems because of their low sensitivity. To address this challenge, a straightforward mathematical method has been proposed for fault detection in UHVDC system based on the downsampling factor (DF) and approximation derivatives (AD). The signals at multiple sampling frequencies were analysed using the DF, and the AD approach was used to generate various levels of detail and approximation coefficients. Initially, the signals were processed with different DF values. The first, second, and third order derivatives of the generated signals were calculated by the AD method. Next, the entropy features of these signals were computed, and the Random Forest-Recursive feature elimination with cross-validation (RF-RFECV) algorithm was used to select a high-quality feature subset. Finally, an ensemble classifier consisting of Light Gradient Boosting Machine (LightGBM), K Nearest Neighbor (KNN), and Naive Bayes (NB) classifiers was utilized to identify UHVDC faults. The MATLAB/Simulink simulation software was used to develop a ±800 kV UHVDC transmission line model and perform simulation experiments with various fault locations and types. Based on the experiments, it has been established that the suggested approach is highly precise in detecting several faults on UHVDC transmission lines. The method is capable of accurately identifying low or high resistance faults, irrespective of their incidence, and is remarkably resistant to transitional resistance. Furthermore, it exhibits excellent performance in identifying faults using a small sample size and is highly reliable.

Open Access
Relevant
Real-Time HIL Simulation of Nonlinear Generalized Model Predictive-Based High-Order SMC for Permanent Magnet Synchronous Machine Drive

The dynamics of the permanent magnet synchronous motor (PMSM) are described by nonlinear equations, which present challenges. Variations in external factors such as unidentified disturbances (loads) and evolving motor properties add complexity to control efforts. To tackle these intricacies and limitations, a nonlinear control approach is essential. Recent attention has turned to employing predictive control techniques for nonlinear multivariable systems, offering an intriguing avenue for research. In this context, this study introduces a novel hybrid control approach that addresses nonlinearity, parametric fluctuations, and external disturbances. The method combines two essential components: first, the outer loop utilizes high-order sliding mode control (HSMC) to optimize torque and trajectory speed, mitigating chattering phenomena while preserving the PMSM’s convergence and robustness traits. The inner loop, known as the current control, employs the newly developed nonlinear robust generalized predictive control (RNGPC) technique. Importantly, this strategy circumvents the need for direct measurement and observation of external disturbances and parameter uncertainties. The proposed strategy follows a two-phase process. Initially, the reference quadratic current is designed using the electromagnetic torque computed via HSMC, subsequently determining the necessary current to achieve the desired torque. The second phase involves computing the controller law through the robust generalized nonlinear predictive control technique. The approach’s strength lies in its ability to maintain stability and convergence in the face of external disturbances and parameter fluctuations, without necessitating precise measurements or knowledge of the disturbances. To validate the proposed control approach, simulation and experimental tests have been conducted across various operational scenarios. The obtained results demonstrate the method’s robustness against external disturbances and parameter changes while ensuring rapid convergence and reliable performance.

Open Access
Relevant
Calculation Method and Characteristic Analysis for Fault Current of Permanent Magnet Direct-Drive Wind Power System considering Positive and Negative Sequence Decomposition

In view of the fact that the influence of positive and negative sequence decomposition, which is widely used in positive and negative sequence decoupling control in control system, on the fault current calculation process is not deeply considered in the existing transient analysis methods of permanent magnet direct-drive wind farm short circuit current, this paper proposes a transient short circuit current calculation model that takes into account positive and negative sequence decomposition. The influence of the transient characteristics of positive and negative sequence decomposition on the control system is studied, and the mechanism of its action on the transient change of short circuit current is revealed. The positive and negative sequence decoupling processes of the circuit equation are modified, and the characteristics of the coupling equation are analyzed. The difference in the converter output voltage between the circuit equation and the control equation and the depth of its influence on the calculation process is revealed. On the basis of quantifying the difference at the converter output voltage, the circuit equation and the control equation are combined to form a short-circuit current calculation model with positive and negative sequence decomposition, which accurately characterizes the transient characteristics of fault current under different voltage drops and effectively improves the accuracy of the calculation results.

Open Access
Relevant
Enhancing Fault Detection and Classification in MMC-HVDC Systems: Integrating Harris Hawks Optimization Algorithm with Machine Learning Methods

Accurate fault detection in high-voltage direct current (HVDC) transmission lines plays a pivotal role in enhancing operational efficiency, reducing costs, and ensuring grid reliability. This research aims to develop a cost-effective and high-performance fault detection solution for HVDC systems. The primary objective is to accurately identify and localize faults within the power system. In pursuit of this goal, the paper presents a comparative analysis of current and voltage characteristics between the rectifier and inverter sides of the HVDC transmission system and their associated alternating current (AC) counterparts under various fault conditions. Voltage and current features are extracted and optimized using a metaheuristic approach, specifically Harris Hawk’s optimization method. Leveraging machine learning (ML) and artificial neural networks (ANN), this technique demonstrates its effectiveness in generating a fault locator with exceptional accuracy. With a substantial volume of data employed for learning and training, the Harris Hawks optimization method exhibits faster convergence compared to other metaheuristic methods examined in this study. The research findings are applied to simulate diverse fault types and unknown fault locations at multiple system points. Evaluating the fault detection system’s effectiveness, quantified through metrics such as specificity, accuracy, F1 score, and sensitivity, yields remarkable results, with percentages of 99.01%, 98.69%, 98.64%, and 98.67%, respectively. This research underscores the critical role of accurate fault detection in HVDC systems, offering valuable insights into optimizing grid performance and reliability.

Open Access
Relevant